
1

Technological Feasibility Analysis
Inclusive Solutions

Members:

Ricardo Chairez, Connor Kilgore, Olive Price, Monika

Beckham, and Ethan Green

Sponsor:

Susan Purrington

Mentor:

Italo Santos

Nov 10, 2022

Overview:
This document highlights the analysis of our development to the software system, challenges
with the product, and possible technological solutions to each issue.

2

Table of Contents

Introduction - 3
Technological Challenges - 4
Technology Analysis - 5

a. Server backend - 5
i. Introduction - 5
ii. Desired Characteristics - 5
iii. Alternatives - 6
iv. Analysis - 7
v. Chosen Approach - 9

vi. Proving Feasibility - 9
b. Database System - 10

i. Introduction - 10
ii. Desired Characteristics - 10
iii. Alternatives - 10
iv. Analysis - 11
v. Chosen Approach - 12

vi. Proving Feasibility - 12
c. Mapping System - 13

i. Introduction - 13
ii. Desired Characteristics - 13
iii. Alternatives - 14
iv. Analysis - 15
v. Chosen Approach - 16

vi. Proving Feasibility - 16
d. User Account System and Authentication - 17

i. Introduction - 17
ii. Desired Characteristics - 17
iii. Alternatives - 17
iv. Analysis - 18
v. Chosen Approach - 20

vi. Proving Feasibility - 20
e. User Interface - 21

i. Introduction - 21
ii. Desired characteristics - 21
iii. Alternatives - 21
iv. Analysis - 22
v. Chosen Approach - 24

vi. Proving Feasibility - 24
Technology Integration - 25
Conclusion - 26
References - 27

3

Introduction
Though over one billion people are living with some form of disability, the world is

universally designed for the able-bodied person (1). There is a great need to initiate mass
awareness among developers, architects and local bodies regarding accessibility of public
spaces. Beyond accessibility, there is the issue of discrimination. Having a safe environment is
important for anyone, but that need is not always met depending on the location or business. As
of now, more than any current resource, the social platforms brought on by mobile devices have
had the greatest impact on the representation of minorities and those living with disabilities.
However, there still remain substantial flaws in the structure of our daily environments that limits
those who may lie in marginalized groups.

Many assistive technologies exist to support disadvantaged groups, including platforms
that work as a vessel for reviewing the suitability of public places. The dominant issue with
these resources is that they are often incomplete, offering information only beneficial to few
individuals, rather than a full-range of data that accommodates every individual. What our client,
Susan Purrington is looking for, is a way to provide accurate and updated information for people
of all disabilities and backgrounds about businesses nearby. Our client and her company have
been gathering data in other ways of sourced information, but they are currently lacking the
reliability and range that crowd-sourced data can supply.

Inclusive Solutions is partnering with Welcomed Here, a non-profit organization that
seeks to create a world where no one struggles to encounter accessibility, acceptance, and
support. In order to move closer to this goal, we will be developing a mobile application that
provides every person a means to find spaces that meet their individual needs. Our vision is to
maximize the use of crowd-sourced information surrounding businesses to provide relevant
information for our client as well as other users about businesses before they make the risk of
visiting them personally.

To accomplish that vision, our client has asked us to create a mobile app to review
businesses on the basis of certain accessibility criteria. A user would be able to create an
account, mark the criteria that they are concerned about, and search our reviews for a place
that best meets their needs. This will make it easier for people with disabilities and other
concerns to be able to know if a place is able to accommodate them and their specific individual
needs. They will also need to be able to rate how well a place they visited was able to meet their
needs.

In the development of this application, we need to consider the specific technical
challenges that we will be facing. In the following sections, we identify the challenges we will be
facing. Then we analyze each challenge, providing a chosen approach as well as alternatives,
this is accompanied by a proof of feasibility by demonstrating that we can work with the software
researched. Finally in our technology integration section we will be bringing all our technical
challenges together to explain how they will fulfill ours and our clients goal for this project.

4

Technological Challenges

a. Server backend

We will need to consider what programming language or platform works best to perform
server-based calculations and operations for our product. This includes considerations of the
difference of operations during server runtime and processing power requirements. For
instance, one language may be far easier to implement than another, but will have far more
overhead that may overextend our hosting server’s capabilities.

b. Database System

Much like mapping API, there exist many databases to choose from today. We will need
to consider which database platform will synergize best with our chosen implementations for our
backend and frontend systems.

c. Mapping System

Many mapping application programming interfaces (API) exist today: Google Maps, Bing
Maps, OpenStreetMaps, etc. We will need to decide on a mapping API that both meets our
client’s projected budget while providing robust mapping and geocoding information for a wide
variety of regions. We will also need to ensure that we can easily integrate the API we choose
with our existing systems.

d. User Account System and Authentication

Our product will need to use some form of storing user information and allowing the user
to access and revise this information on demand. The approach we choose will need to have
effective security measures in place to prevent any form of security leak. We will also need to
ensure that our account system is easy for any user to access and use.

e. User Interface

Being the aspect of our product that end users will interact with directly, it is crucial that
we choose an interface technology that will be complex enough to create a good looking
application while also integrating well with our existing workflow.

5

Technology Analysis

Server backend

Introduction

Our crowdsourcing application will be used for both for the benefit of every user
as well as for research purposes conducted by Welcomed Here. By relying on a crowd
of devices, we must implement a language that performs swift calculations which
automatically update the collaborative documentation of each business or public space.
The language component must be reusable, modular, and offer a range of activity
performed by the user. The carrying out this software must prove to provide accurate
overviews of every local space to the user, particularly on a large scale. The language
chosen will call for a substantial collection of data, whilst considering the capability,
background, and identity of each individual user that submits a review. The server
backend must support an algorithm that allows for a customized reporting system based
on user characteristics and needs.

Desired Characteristics

Our backend language should enable us to manage data changes coming from
the frontend to create frameworks capable of handling many concurrent requests.
Choosing a language that team members are already proficient in is preferred. The
three desired characteristics of our language are as follows:

a. Event-driven architecture
This design pattern enables events to be detected which act instantly to replace
the current “state” of documentation for a business. Also known as asynchronous
communication, the information flow between devices, backend servers, and the
user interface is updated consistently in real-time, rather than periodically.

b. Scalable
In backend, scalability refers to the way in which a system's performance
increases or decreases in response to the amount of queries, requests, and
other processing demands. For example, a program that is highly scalable would
perform well on both small and large sets.

6

c. Contain both object-oriented and functional constructs
Object-oriented programming (OOP) centers program design around data or
objects. It emphasizes the organization of code into vital variables which each
accomplish different operations. This method allows for modularity, making both
development and troubleshooting much more efficient. The generalized criteria
for OOP is polymorphism, encapsulation, and inheritance. Functional
programming is different in the sense that it uses immutable and predefined data
to tell a program exactly what to do.

Alternatives

1. Kotlin
Officially released in 2016 by Jetbrains, Kotlin is modern, statically-typed, and
targets several different platforms. It is the preferred language for Android
development. It is interoperable with Java and is extremely concise, allowing for
easy and safe development.

2. Javascript backend development frameworks such as Node.js
Being one of the most used programming languages in the world, JavaScript is
used for both frontend and backend development. It was invented by Brendan
Eich in 1995 and became extremely popular in the early 2000s. Node is reliable
for developing platforms that require a persistent connection from client to server;
they are often used for real-time applications such as push notifications, chat,
and news feeds.

3. Java backend
Java is a high-level language developed by James Gosling in 1991. There are
four types of applications that can be created with Java, and one of them is
Android app development. It is a simple, robust, and secure language.

4. PHP
This is a server-side scripting language, meaning it is used to manage dynamic
content, databases, session tracking, etc. It was created by Rasmus Lerdorf,
primarily geared towards web development in 1993. It can be used to take care
of web-service requests from the Android App to the server.

7

Analysis

1. Kotlin
Due to its succinct and intuitive nature, Kotlin is known to increase team
efficiency. Work is able to be done with fewer lines of code, as seen in Figure 1. It
is also consistent with Java-related tools and frameworks. However, rough
estimates show a 40% cut in the number of lines of code compared to Java.

a. It should be noted that Kotlin supports event-driven architecture.
b. Kotlin is often used to build server-side applications that scale to massive

numbers of clients, i.e Google, Pinterest, Netflix, Tinder, and more.
c. Both object-oriented and functional structures are supported.

Figure 1. Java and Kotlin textview comparison (2).

2. JavaScript
a. Node.js is asynchronous in nature, allowing events emitted cause listener

objects to be executed.
b. As Node.js is an industry leader, it is one of the most scalable languages

available. It is known to be highly efficient for the creation of high-end
applications.

c. Though JavaScript is not a class-based object-oriented language, it still
supports polymorphism and encapsulation, as most dynamic languages
do.

8

3. Java
a. There are several event listeners available, making Java an event-driven

language
b. Java is known to have a rich set of caching solutions to aid scalability.
c. Java is one of the most widely used languages for object-oriented

programming.

4. PHP
a. There are libraries, such as ReactPHP, which allow for event-driven,

non-blocking I/O.
b. Many developers prefer not to work with PHP because they do not find it

scalable, though there are ways to make it more dependable
c. PHP is an OOP and functional language.

we compare Kotlin, JS, and Java, as these languages fulfilled the three desired
characteristics described above.

Kotlin Java JavaScript

Benefits ● Reduces lines of
code by 40%

● Safe from
“billion-dollar
mistake” or
null-safe

● Interoperable

● Each team
member is
proficient in this
language

● Extremely
well-established;
many libraries
available

● Rigid structure
makes
application less
prone to bugs

● Provides
simplification
of client-server
interaction

● Reduces
demands on
servers

Challenges ● Because
language is new,
there are limited
libraries and
solutions

● Slower
compilation
speed

● Cumbersome
syntax/readabilit
y issues

● More
memory-consum
ing/slower
compared to
other languages

● More prone to
bugs

● Client-side
security often
overlooked

9

Chosen Approach

Java will be the chosen approach for this case. Though this language has the
disadvantage of tedious syntax, its structure is what our team is most experienced in.
The benefit of a well-established language provides more learning tools and solutions
than Kotlin, which only has limited resources available due to being relatively new.

Event-driven Scalable OOP and
functional
constructs

Average

Java 5 5 5 5

Kotlin 4 5 4 4.3

JavaScript 5 4 3 4

PHP 3 2 5 3.3

Proving Feasibility

To further prove that this solution will fully combat our specified challenge, a
series of client server programs will be written in Java.These programs will handle
requests made by the client, performing operations similar to those we will need for our
reporting systems. This will be demonstrated later in the semester.

10

Database System

Introduction

One of the main purposes of this project is to gather information to provide
demographic analytics to our client. The answer to how we store this information is
through a database that holds that information and organizes it such that we can make
conclusions based on what the data is showing.

Desired Characteristics

● Affordability: having a server host that runs the database, though initially free,
will eventually have an upkeep cost. It is important that the long term pricing is as
low as possible while also fulfilling the needs of our client.

● Scalability: In early development, the expectation is that only a few people will
make use of the services that the database provides, but in time the power and
size of the database will need to grow, ultimately having a service that can scale
with that anticipated growth is critical.

● Usability: Different server host services include varying libraries, api’s and what
capabilities they have. It is important that the services provided are able to fulfill
our needs as developers to make other technologies possible. This especially
applies to how we intend to manage the data collected into our database on the
backend.

Alternatives

The first service that comes to mind is Amazon Web Services (AWS), launched
in 2006 by Amazon. This service is known through previous projects for members on
the team and was very easy to set up. AWS is used by a lot of diverse big name
companies such as Netflix, McDonalds, Samsung and Lyft.

Firebase is another service that can be used to store our database. Firebase
was launched in 2011 by James Tamplin and Andrew Lee, this service is now owned by
Google. This alternative was recommended to us by the group mentor, information was
then found on the internet in various forums and pages. Firebase is utilized by
companies such as Instacart, Twitch and Square App.

11

Analysis

Amazon Web Services Firebase

Usability ● MySQL server integration
which means relational
data storage model

● User authentication api
● Pre-existing familiarity

among team members.

● Real time object based data
storage (does not have
mySQL server integration)

● User authentication api

Scalability ● Pay what you use model
● Capable of upgrading

service model as the
database requires more
resources

● Pay what you use model
● Capable of upgrading

service model as the
database requires more
resources

Affordability ● 12-month free tier to use a
server with 750 hours per
month.

● Billed automatically after
trial period.

● Future pricing varies
depending on the instance
used as well as the size of
web service needed.

● Bases the free tier based off
of a monthly allotted amount
of read-write queries to the
database that will be
blocked after the capacity is
reached.

● There is no limit to how long
the free tier is used. Once
the project scales up, The
pricing will be based on how
many queries are made to
the database, as well as the
required storage size
needed to withhold all data

● Queries are blocked after
the free limit capacity is
reached when using the free
tier

12

Chosen Approach

Ultimately the best approach is to go with Amazon Web Services. The reasoning
for this is the use of a relational database. Our client will be expecting to have data from
lots of different datapools to be interacting with each other to create demographic
information. Firebase’s object based data storage can heavily limit the ability to do such
functions. Additionally AWS will be a cheaper service in the long run when the project
scales up.

Here is a table analysis of why AWS is the best technology to use:

Service Usability Scalability Affordability Average

AWS 5 5 3.5 4.5

Firebase 2.5 5 4.5 4

Proving Feasibility

In order to prove feasibility of this approach, a demo will be used later this
semester that will demonstrate a simple upload of data to a SQL server that is hosted
on an Elastic Compute Cloud (EC2) instance followed by a simple download of data
from that database in our technology demo.

13

Mapping System

Introduction
A key component of our MVP is the ability to search for places that meet

your selected needs by distance and list of needs met. Unless we have a way to
find the distance from your current location and what places would be within a
given distance of you, that functionality would be impossible for us to implement
in the 8 months we have to design a solution. Fortunately, many online mapping
sites already have this information and provide APIs to developers to leverage
their existing solutions to these problems, but they each have their own
drawbacks that we need to address.

Desired Characteristics

● Geocoding
We will need a system that is able to encode an address into latitude and
longitude coordinates, and that would be able to decode coordinates from
the phone’s location provider into an address. Ideally, such a tool would be
able to decode the address of a given set of GPS coordinates directly into
a predefined data structure that we can easily manipulate to get the data
from the API to the database without too many intermediate function calls
or cumbersome nesting.

● Place Data and Search
It would simplify the review and upload process greatly if we could
leverage our map provider’s existing database of business names,
addresses, categories, and other information instead of requiring the user
to manually enter everything themselves.

To be able to do that effectively, however, we’d need to have a mapping
system that provides high-quality, up-to-date information about businesses
with as few businesses missing as possible. The business data should
also have as few closed businesses as possible, to prevent users from
leaving a review or searching for information about a business that no
longer even exists. Once again, it would be ideal for our chosen solution to
provide this data in a native data structure, but another format would work
provided we can get the data we need easily.

14

● Cost Structure
Because the client will need to continue to pay for the mapping system access
long after the project is completed, we should seek to find a solution that is
cost-effective and has a simple, consistent cost structure which will make it
easier for them to budget for, while still allowing the client to scale our solution up
easily as more users start using the app.

Alternatives

1. Apple MapKit JS
Apple MapKit JS is a JavaScript library used to access and display data from
Apple’s Apple Maps service. While Ethan was still trying to decide if Google
Maps Android SDK or the Bing Maps API were better, Ricardo informed the team
that Apple MapKit is included in the cost of an Apple Developer Account
subscription. Later research revealed the existence of a JavaScript version of the
MapKit libraries which could theoretically be hooked into an Android app.

Apple wrote this framework in 2019 as a way to allow developers to use Apple
Maps in their websites without having to switch the user into the Apple Maps app
on iOS and Mac devices. It has since been adopted by the DuckDuckGo search
engine as their main mapping and place info provider.

2. Google Maps Android SDK
Google Maps is the leading navigation and point-of-interest information provider
in the market, and they provide a set of SDK libraries that can be used in an
Android app. The team had known of the existence of this framework before
starting the project.

The first version of this framework was created by Google in 2008, with the
launch of Android as the sole navigation and location data provider. Due to its
long history as a navigation and geospatial data provider, Google Maps is used
by the vast majority of Android apps that need maps or location data.

3. Bing Maps REST API
The Bing Maps REST API is a web request system that Microsoft created to
allow programmers to get data from Bing Maps that matches with their queries.
Ethan discovered the existence of Bing Maps as a geocoding solution early on,
before the map needs became more complex than simple geocoding.

Bing Maps is used largely by smaller organizations that don’t want to pay as
much as Google Maps costs for a location service provider.

15

Analysis

Apple MapKit JS Google Maps SDK Bing Maps API

Native
Language
Objects

No, this framework is JavaScript
only, so it won’t be able to give
us Java or Kotlin (Android’s 1st
class languages) objects without
a conversion function. Will
require a WebView in the app to
run

Yes, the Android
libraries define the
return type class in
both Java and Kotlin,
in addition to the query
functions we’ll need.

No, but it returns JSON
that can be serialized
into an object through
the GSON library

Location
Data
Quality

Less than ideal: Most locations
are where they should be, but
there are a few duplicate
locations and locations in the
wrong place.

High quality: Most
businesses self-report
their own locations
and Google verifies
information submitted
by users about
businesses.

Acceptable: most
places exist in their
maps in or around NAU
campus, although some
are miscategorized.

Search
Command
Structure

A function that takes in a
SearchOptions object and
executes a search based on
those options, and returns a list
of places matching the
description

A function that takes in
individual search
options and returns a
native object based on
those options.

It lacks a “radius” field,
so we’ll have to
calculate corners of a
box from the radius

A URL with fields that
are populated with
parameters for our
requests.

This makes
automatically
suggesting a place from
the search difficult, if
not impossible

Geocoding Create a mapkit.geocoder object
with the current location, then
call its lookup method with the
search string, or call its reverse
lookup method with a
coordinates object

Create a
geocodeListener
object to get the
results, then pass it
into either the
appropriate functions
to run a forward or
reverse geocode

Request using a url
with a
SpatialFilter(lat,long,dis
tance) or
SpatialFilter(address_st
ring, distance) to
reverse or forward
geocode from Bing’s
data

Cost
Structure
and
Scalability

You get up to 25,000 service
calls and 200,000 map
instantiations per day with the
$99 a year Apple Developer
membership.

More uses require negotiation
with Apple, and it is unclear if
nonprofit discounts are available.

Each type of
transaction has its own
associated cost, but
you can set usage
limits per day to keep
your bill from spiraling
out of control.
Each
developer/organization
gets $200 free every
month, with nonprofit
discounts available
after meeting with
Google.

Developers and
nonprofits get free
usage, developers
being limited to 125000
billable transactions a
year, and nonprofits
being limited to 50,000
per day.
If more billable request
transactions are
needed, you must
purchase a volume
license from Microsoft
or a distributor.

16

Chosen Approach

With all the factors considered, it appears that the Google Maps SDKs are our
best choice. The search and autocomplete APIs are already in Java, so we won’t need
to do much (if any) parsing, making it superior to MapKit JS. Google Maps also has Java
libraries, so we don’t need to format query strings using cumbersome string.Format()
calls. Their cost structure is also the most scalable, allowing the client to keep the app
running while the user count grows without needing to renegotiate their contract with the
map provider. We’ll also be able to trust the data we receive about what type of business
it is and where it is located more than we would with our other options.

Native
Language
Objects

Data
Quality

Search
Command
Structure Geocoding

Cost
Structure
and Ease of
Scalability Average

Apple
MapKit JS 0 2.5 5 5 2.5 2

Google
Maps SDK 5 5 3 5 4 4.2

Bing Maps
REST API 2.5 3.5 3.5 5 6 3.2

Proving Feasibility

In order to prove the feasibility of this approach, we will write a small demo
program that gets the user’s location from around campus, gets the names, addresses,
and categories of the buildings, and displays them in a list. It will then get the GPS
coordinates of the SICCS and Engineering buildings and display those on a map.

17

User Account system and Authentication

Introduction

Central to our client’s vision of our product will be the ability for any of our users
to maintain personal information and preferences for easy retrieval and revision as
needed. An account system would allow all that as well as the ability to access this
information from as many devices as one needs. Account systems and implementations
exist all over the internet, so we have many implementations to choose from. A key
issue we will have to address is the threat of user information being compromised in
one way or another. The information we will be handling could be very dangerous in the
wrong hands, so any interface for this information must be as secure as possible. Our
solution will ideally have a strong link between our frontend and backend for seamless
authentication.

Desired Characteristics

● Secure
○ Account system related information should be as difficult as possible for

malicious actors to access. Part of this is ensuring that login credentials
are encrypted.

● Easy to implement
○ Considering the amount of time we’ll be spending on the system as a

whole, we should choose an approach that can be easily implemented in
our chosen backend and frontend languages.

● Easy to license
○ The technology we choose to implement must have compatible licensing

to be used in our project. This includes low or free of cost solutions in
particular.

Alternatives

1. Firebase Authentication
Firebase is an application development platform owned and operated by Google.
It includes many features for building, releasing and monitoring applications. Of
primary interest to our project is the authentication libraries and platform included
with Firebase.

2. pac4j

18

pac4j is a security framework developed for Java. It includes many libraries with
support for a variety of authentication methods as well as different client methods
to access them.

3. JWT
JSON Web Tokens (JWT) are a format for transferring specific information in a
secure way between client and server. Specifically, authentication data is sent as
encrypted JSON data.

Analysis

1. Firebase Authentication
a. Credentials must be run through a given method to attempt login. This

method encrypts credentials and sends them directly to Firebase. While
we cannot see what Firebase exactly does with the given credentials, it is
safe to assume that they are handled appropriately due to Google
managing them.

b. Implementing a sample Android application using provided Firebase
libraries took very little effort. Firebase libraries have intuitive method
names such as “signInWithEmailAndPassword” as well as extensive
documentation for creating accounts, logging in, and accessing account
data.

c. Free Firebase plans allow unlimited access to non-phone verification
methods and a limit of 50,000 monthly active users. This plan is free to
use for any purpose, with a pay-as-you-go scale for active users beyond
this limit.

2. Pac4j
a. The libraries automatically encrypt sent data when using IP address or

Lightweight Directory Access Protocol connections. When using
SQL-based authentication, password data must be manually encrypted
using an external library.

b. Implementing pac4j in a sample Android application took a lot of
management of individual URLs and locations to query for authentication.
It seems that due to the flexibility of the libraries, there is much overhead
to account for the difference between an Android client and pure Java.

c. Pac4j is licensed under the Apache License 2.0, which permits royalty-free
use and redistribution for any purpose.

19

3. JWT
a. JWT is inherently secure as the RFC 7519 defining the standard for JWT

states that it must include an encryption algorithm. This will, however,
require that we maintain a “secret” or other encryption keys.

b. Since JWT follows a JSON format, it is very easy to parse all information
passed in by a JWT. From there, it would be trivial to compare username
and password data against database information. We would, however,
have to make an implementation for maintaining stateful connections.

c. Since JWT is just a public standard, we would completely own our
implementation of the standard.

Firebase Authentication pac4j JSON Web Tokens

Benefits ● Very easy to
integrate into
mobile
applications.

● Native support
for a large variety
of authentication
methods.

● Well
documented.

● Diverse plethora
of libraries for
most
implementations

● Available under
a permissive
free-use license.

● Well
documented,
universal
standard.

● More
flexibility for
individual
functionality.

● Very easy to
parse input
information.

Challenges ● Depends on an
external service.

● Costs of service
will increase as
our user base
increases.

● Will require the
use of external
libraries for
encryption.

● The lack of
overhead will
require much
more manual
implementation
on our part.

● Much more
work to be
done for
implementati
on.

● More
management
of each
individual
auth variant.

20

Chosen Approach

Considering our desired characteristics and overall impression from the analysis of each
alternative, we constructed the following table summarizing the benefits and challenges of each
approach:

Secure Easy to
implement

Easy to license Average

Firebase
Authentication

5 5 3 4.3

pac4j 3 3 4 3.3

JSON Web
Tokens

4 3 5 4

Given the constraints of the scope of this project, as well as our analysis of each
approach, we have chosen to use Firebase Authentication for our User Account
System solution. For a project with a larger scope or a team dedicated to this aspect of
the project, the other approaches could potentially yield a very robust and powerful
system, but for the purposes of our project we must ensure we do not spend unneeded
resources. The limits of the free license for Firebase are extremely lax for a project in
development and provide many tools to reduce our workload while not compromising
security.

Proving Feasibility

In our analysis, we constructed a simple authentication test using Firebase
Authentication. Going forward, we will expand upon our simple test to include far more
authentication methods, and establish a consistent session with confirmed credentials.

21

User Interface

Introduction

Our app is made for accessibility and usability, so we want our user interface to
reflect that. There are many frameworks to choose from when it comes to mobile
development. Some are exclusive to Android or iOS, while some are cross platform.
When choosing a framework to build our user-interface, our main concern is that it can
integrate well with our chosen map framework, Google Maps. Map integration is a large
part of our app, so we need a framework that works well with it. The user interface is a
key part of our app, so we need to choose a UI framework that will allow us to create an
experience that is accessible, seamless, and intuitive for all users.

Desired Characteristics

● Integrates with Android and Google Maps SDK
○ Map integration is a large part of our app, so we need a UI framework that

can incorporate it. We are creating an Android app and using the Google
Maps SDK, so the framework must be compatible with both.

● Easy to implement
○ With little time we have, we need to choose a UI framework that allows us

to create something intricate while being intuitive to use.
● Robust/Feature heavy

○ Our user interface is going to be relatively complex. We need a UI
framework that is not limited in its potential. Not only are we planning on
adding a map, but the app needs to be accessible to all users. We need
as much flexibility as possible when creating the user interface.

Alternatives

1. XML/Layout Editor
XML is a markup language similar to HTML. For native Android development,
XML is used to define the layout of the UI elements. The layout editor is a tool
built into Android Studio that allows developers to modify the UI with a GUI
instead of working directly with the XML. As of 2022, XML is the most popular
way to create user interfaces in native Android.

2. Jetpack Compose
Jetpack Compose is Android’s recommended UI framework for building UI in
native Android. It is a very new framework, having been released in 2021. It uses

22

a declarative API that requires less code than XML. Compose is written
exclusively in Kotlin and incompatible with Java.

3. SwiftUI
SwiftUI is a UI framework for building UI in native iOS. It is a very new
framework, having been released in 2019. It uses a declarative API that requires
less code than the imperative alternative, UIKit. SwiftUI is written exclusively in
Swift and is only for iOS applications. Jetpack Compose is very similar to SwiftUI
in that they are both new declarative UI frameworks that are written in their native
language.

Analysis

1. XML/Layout Editor
a. XML is the tried and true way of creating user interfaces in native Android.

It is directly compatible with Google Maps, so integrating it into our app
would be seamless and intuitive.

b. Out of all the UI frameworks considered, XML has the most
documentation and familiarity among Android developers. While Jetpack
Compose and SwiftUI are newer frameworks, XML has been around much
longer and benefits from having years of documentation and experience
among developers. This could make our experience much easier, as we
will have more resources at our disposal and not have to worry about the
quirks that come with using a newer technology.

c. XML is the most capable and robust way of making user interfaces in
Android. Being around as long as it has, there is a tutorial or
documentation for almost anything that needs to be implemented.

2. Jetpack Compose
a. Jetpack Compose is exclusive to native Android development. It is

capable of integrating Google Maps, however it is newer and does not
have the flexibility XML has with its integration. Compose is capable of
integrating Google Maps, however it does not directly support it so there is
some hacking involved to get it to work properly.

b. Android claims Jetpack Compose to be an easier and more intuitive way
to create user interfaces. However, Compose lacks sufficient
documentation because it has only been out for a year. Using this newer
technology could be tricky, as we would have to deal with all the quirks
and lack of information inherent in choosing to use a solution that has only
been out for a year.

c. Jetpack Compose is a newer technology, similar to SwiftUI. Like SwiftUI, it
is lacking in features and capabilities that its predecessor (XML) has had

23

for years. The most crucial capability being direct compatibility with
Google Maps.

3. SwiftUI
a. SwiftUI is exclusive to iOS development and incompatible with Android. It

is capable of integrating Google Maps, however MapKit would be the
better choice for SwiftUI as it is native to iOS (and free). Being
incompatible with Android eliminates SwiftUI from consideration.

b. SwiftUI is the most intuitive and easiest UI framework listed. It is similar to
Jetpack Compose in how it works but has the advantage of being out for
two years longer. It has more documentation and tutorials than Compose,
but still not as much as XML.

c. SwiftUI was built as a successor to Apple’s other UI framework, UIKit.
While Apple claims SwiftUI to be the future of creating user interfaces for
Apple devices, it is simply incapable of doing many of the things UIKit is
capable of.

XML/Layout Editor Jetpack Compose SwiftUI

Benefits ● Similar to HTML,
which we are all
familiar with

● Most tried and true
way of creating user
interfaces in
Android

● Lots of
documentation and
tutorials

● Directly compatible
with Google Maps

● The future of
creating UI in
Android, more future
proof

● Can integrate
Google Maps

● Less code and files
than XML

● Easiest UI
framework to use

● Newer
technology, future
proof

Challenge
s

● Older technology,
might be phased out
by Jetpack
Compose in the
future

● Requires more code
and files than
Jetpack Compose

● Does not have
extensive
documentation

● Newer technology,
lacking capabilities
XML has

● Is capable of
integrating Google
Maps, but not
directly compatible.

● Incompatible with
Android

● Limited in its
capabilities

24

Chosen Approach

Integrates with
Android and
Google Maps
SDK

Easy to
implement

Robust/Featur
e heavy

Average

XML/Layout
Editor

5 3 5 4.3

Jetpack
Compose

3 4 3 3.3

SwiftUI 0 5 3 2.6

Given the presented UI frameworks and tools, XML/Layout Editor is our chosen
approach. SwiftUI, while better overall than both XML and Jetpack Compose, is just not
feasible because it is exclusive to iOS and we need something that works with Android.
XML and Jetpack Compose are the only two realistic options we have. Jetpack
Compose is a newer and more intuitive UI framework that is recommended by Android,
however its indirect compatibility with Google Maps and lack of documentation hurt its
consideration. Google Maps is a large part of our app and we want something that is
tried and true, so we believe XML is the best way to go.

Proving Feasibility

To prove feasibility, we will mock up the user interface in Android Studio with XML
and Jetpack Compose respectively. SwiftUI, while a powerful technology, is not worth
testing because it is not compatible with Android

25

Technology Integration

All of the technologies previously mentioned need to work together with a
comprehensive strategy that will help our design accomplish what is required from our
client. To do so a diagram was made to show how the different components will
communicate with each other:

The user sends their reviews and queries to the mobile interface, which is
divided into a Client Review UI and a Client Search UI after the user is logged in
through the login UI. The authentication system sends the Login code a DB Access
Token that the other modules will then use to either search for businesses or submit a
review, and sends the server backend the access level of that user. In the process of

26

searching for places or submitting a review, they send the mapping system their current
location. Search UI then requests a list of nearby businesses that it can use in its
search, and Review UI then gets the ID from Google Maps that gives them the category
and ID of the business to use in the review. The Review UI then sends the review to the
Server Backend, which then processes it and inserts it into the database. The Search UI
submits its requests to the server backend, which then queries the database and
passes the data back to the client, which then presents the results to the user.

Conclusion

People have individual needs that must be fulfilled when going to a public space and
right now there is not a resource to find information on a given location that fully meets the
accommodation needs of every individual. Our team, Inclusive Solutions, is partnering with
Welcomed Here to create a mobile app that assists individuals in finding spaces that fulfill their
needs. We will accomplish this by building an application that allows users to enter various
criteria focusing on inclusivity and rate with these in mind.

In order to create our application, we must first address the following technical
challenges:

● Server Backend
● Database System
● Mapping System
● User Account System and Authentication
● User Interface

This document has outlined our research into viable solutions and implementations for each of
these problems. Our considerations for each of these challenges focused mainly on the
scalability as this project progresses, future costs associated with our solutions, and what will
work best for us going forward to ensure we deliver the minimum viable product by the
conclusion of this project. As per such, we came up with the following solutions respectively:

● Java
● Amazon Web Services
● Google Map SDK
● Firebase Authentication
● XML/Layout Editor

Moving forward, we will develop proof of concept demonstrations for each of these
solutions to show how we will be integrating them in our complete product. We are confident
that our chosen solutions will support a complete and intuitive minimum viable product by the
conclusion of our work.

27

References

(1) United Nations. (n.d.). Factsheet on persons with Disabilities Enable. United Nations.
Retrieved November 7, 2022, from
https://www.un.org/development/desa/disabilities/resources/factsheet-on-persons-with-disabilitie
s.html

(2) Difference between Java and Kotlin in Android with examples. GeeksforGeeks. (2020, May
27). Retrieved November 7, 2022, from
https://www.geeksforgeeks.org/difference-between-java-and-kotlin-in-android-with-examples/

(3)“Firebase Realtime Database.” Google, Google, https://firebase.google.com/docs/database.

(4) Daly, Donald J., and Donald J. Daly. “Economics 2: EC2.” Amazon, CGA Canada
Publications, 1987, https://aws.amazon.com/ec2/instance-types/.

